Электротехнический-портал.рф

...для студентов ВУЗов электротехнических специальностей и инженеров

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта
Главная Технология конструкционных электротехнических материалов Классификация магнитных материалов и требования к ним

Классификация магнитных материалов и требования к ним

E-mail Печать PDF
(2 голоса, среднее 5.00 из 5)

Магнитными веществами, или магнетиками, называются вещества, обладающие магнитными свойствами. Под магнитными свойствами понимается способность вещества приобретать магнитный момент, т.е. намагничиваться при воздействии на него магнитного поля. В этом смысле все вещества в природе являются магнетиками, так как при воздействии магнитного поля приобретают определенный магнитный момент. Этот результирующий макроскопический магнитный момент М представляет собой сумму элементарных магнитных моментов mi - атомов данного вещества

(6.1)

Элементарные магнитные моменты могут быть либо наведены магнитным полем, либо существовать в веществе до наложения магнитного поля; в последнем случае магнитное поле вызывает их преимущественную ориентацию.

Магнитные свойства различных материалов объясняются движением электронов в атомах, а также тем, что электроны и атомы имеют постоянные магнитные моменты.

Вращательное движение электронов вокруг ядер атомов аналогично действию некоторого контура электрического тока и создает магнитное поле, которое на достаточном расстоянии представляется как поле магнитного диполя с магнитным моментом, значение которого определяется произведением тока и площади контура, который ток обтекает. Магнитный момент является векторной величиной и направлен от южного полюса к северному. Такой магнитный момент называется орбитальным.

Сам электрон имеет магнитный момент, который называется спиновым магнитным моментом.

Атом представляет собой сложную магнитную систему, магнитный момент которой является результирующей всех магнитных моментов электронов, протонов и нейтронов. Так как магнитные моменты протонов и нейтронов существенно меньше, чем магнитные моменты электронов, магнитные свойства атомов по существу определяются магнитными моментами электронов. У имеющих техническое значение материалов это прежде всего спиновые магнитные моменты.

Результирующий магнитный момент атома при этом определяется векторной суммой орбитальных и спиновых магнитных моментов отдельных электронов в электронной оболочке атомов. Эти два вида магнитных моментов могут быть частично или полностью взаимно скомпенсированы.

В соответствии с магнитными свойствами материалы делятся на следующие группы:

а) диамагнитные (диамагнетики),

б) парамагнитные (парамагнетики),

в) ферромагнитные (ферромагнетики),

г) антиферромагнитные (антиферромагнетики),

д) ферримагнитные (ферримагнетики),

е) метамагнитные (метамагнетики).

А) Диамагнетики

Диамагнетизм проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.

Диамагнетизм свойствен всем веществам. При внесении какого-либо тела в магнитное поле в электронной оболочке каждого его атома, в силу закона электромагнитной индукции, возникают индуцированные круговые то­ки, т. е. добавочное круговое движение электронов вокруг направления магнитного поля. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему магнитному полю (независимо от того, имелся ли первоначально у атома собственный магнитный момент или нет и как он был ориентирован). У чисто диамагнитных веществ электронные оболочки атомов (молекул) не обладают постоянным маг­нитным моментом. Магнитные моменты, создаваемые отдельными электронами в таких атомах, в отсутствие внешнего маг­нитного поля взаимно скомпенсированы. В частности, это имеет место в атомах, ионах и молекулах с целиком заполнен­ными электронными оболочками в атомах инертных газов, в молекулах водорода, азота.

Удлинённый образец диамагнетика в однородном магнитном поле ориентиру­ется перпендикулярно силовым линиям поля (вектору напряженности поля). Из неоднородного магнитного поля он вытал­кивается в направлении уменьшения напряжённости поля.

Индуцированный магнитный момент I, приобретаемый 1 молем диамагнитного вещества, пропорционален напряженности внешнего поля H, т.е. I=χН. Коэффициент χ называется молярной диамагнитной восприимчивостью и имеет отрицательный знак (т.к. I и H направлены навстречу друг другу). Обычно абсолютная величина χ мала (~10-6), например для 1 моля гелия χ = -1,9·10-6.

Классическими диамагнетиками являются так называемые инертные газы (He, Ne, Ar, Kr и Xe), атомы которых имеют замкнутые внешние электронные оболочки.

К диамагнетикам также относятся: инертные газы в жидком и кристаллическом состояниях; соединения, содержащие ионы, подобные атомам инертных газов (Li+, Be2+ , Al3+ , O2- и т.д.); галоиды в газообразном, жидком и твердом состояниях; некоторые металлы (Zn, Au, Hg и др.). Диамагнетиками, точнее сверхдиамагнетиками, с χД = - (1/4) ≈ 0,1, являются сверхпроводники; у них диамагнитный эффект (выталкивание внешнего магнитного поля) обусловлен поверхностными макроскопическими токами. К диамагнетикам относится большое число органических веществ, причём у многоатомных соединений, особенно у циклических (ароматических и др.), магнитная восприимчивость анизотропна (таблица 6.1).

Диамагнитная восприимчивость ряда материалов

Таблица 6.1 - Диамагнитная восприимчивость ряда материалов

Б) Парамагнетики

Парамагнетизм – свойство веществ (парамагнетиков) намагничиваться в направлении внешнего магнитного поля, и, в отличие от ферро-, ферри- и антиферромагнетизма, парамагнетизм не связан с магнитной атомной структурой, а в отсутствие внешнего магнитного поля намагниченность парамагнетика равна нулю.

Парамагнетизм обусловлен в основном ориентацией под действием внешнего магнитного поля Н собственных магнитных моментов µ частиц парамагнетического вещества (атомов, ионов, молекул). Природа этих моментов может быть связана с орбитальным движением электронов, их спином, а также (в меньшей степени) со спином атомных ядер. При µН « , где Т – абсолютная температура, намагниченность парамагнетика М пропорциональна внешнему полю: М=χН, где χмагнитная восприимчивость. В отличие от диамагнетизма, для которого χ < 0, при парамагнетизме восприимчивость положительна; её типичная величина при комнатной температуре (Т ≈ 293 К) составляет 10-7 – 10-4.

Парамагнетик – магнетик с преобладанием парамагнетизма и отсутствием магнитного атомного порядка. Парамагнетик намагничивается в направлении внешнего магнитного поля, т.е. имеет положительную магнитную восприимчивость, которая в слабом поле при не очень низкой температуре (т.е. вдали от условий магнитного насыщения) не зависит от напряженности поля. Поскольку свободная энергия парамагнетика понижается в магнитном поле, при наличии градиента поля он втягивается в область с более высоким значением напряжённости магнитного поля. Конкуренция диамагнетизма, появление дальнего магнитного порядка или сверхпроводимости ограничивают область существова­ния вещества в парамагнитном состоянии.

Парамагнетик содержит, по крайней мере, один из перечисленных ниже типов носителей парамагнетизма.

а) Атомы, молекулы или ионы с некомпенсированными магнитными моментами в основном или возбуждённом состояниях с энергией возбуждения Ei <<. Парамагнетики этого типа обладают ориентацией ланжевеновским парамагне­тизмом, зависящим от температуры Т по Кюри закону или Кюри Вейса закону, в них возможно магнитное упоря­дочение. [Похожий по проявлениям магнетизм неоднородных систем малых ферро- или ферримагнитных однодоменных частиц (кластеров) в жидкостях или твердых матрицах выделен в особый вид – суперпарамагнетизм].

Этот тип носителей присутствует в парах металлов нечётной валентности (Na, Тl); в газе молекул О2 и NO; в некоторых органических молекулах со свободными радикалами; в солях, окислах и др. диэлектрических соединениях 3d-, 4f-, и 5f-элементов; в большинстве редкоземельных металлов.

б) Те же частицы, имеющие орбитальный магнитный момент в возбуждённом состоянии с энергией возбуждения Ei <<. Для таких парамагнетиков характерен не зависящий от температуры поляризационный парамагнетизм.

Этот тип носителей парамагнетизма проявляется в некоторых соединениях d- и f-элементов (соли Sm и Eu и др.).

в) Коллективизированные электроны в частично запол­ненных энергетических зонах. Им присущ сравнительно слабо зависящий от температуры спиновый Паули-парамагнетизм, как правило, усиленный межэлектронными взаимодействиями. В d-зонах спиновый парамагнетизм сопровождается заметным ванфлековским парамагнетизмом.

Подобный тип носителей преобладает в щелочных и щёлочноземельных металлах, d-металлах и их интерметаллических соединениях, актиноидах, а также в хорошо проводящих ион-радикальных органических солях:

O2 Li

NO                       Ca

FeCl2 Al

EuCl3 Pt

UF6 U

В) Ферромагнетики

Ферромагнетизм – магнитоупорядоченное состояние вещества, при котором все магнитные моменты атомных носителей магнетизма в веществе параллельны, и оно обладает самопроизвольной намагниченностью.

 

Рисунок 6.1 – Ферромагнитная (коллинеарная) атомная структура гранецентрированной кубической решётки. Ниже точки Кюри θ стрелками обозначены направления атомных моментов; Js – вектор суммарной намагниченности единиц объёма.

Параллельная ориентация магнитных моментов (рисунок 6.1) устанавливается при температурах Т ниже критической температуры Кюри θ. Часто ферромагнетизм называется совокупностью физических свойств вещества в указанном выше состоянии. Вещества, в которых установился ферромагнитный порядок атомных магнитных моментов, называются фер­ромагнетиками.

Рисунок 6.2 – Кривая безгистерезисного намагничивания (0Bm) и петля гистерезиса поликристаллического железа. Значению индукции Вт соответствует намагниченность насыщения Js

Магнитная восприимчивость χ ферромагнетиков положительна (χ >0) и достигает значений 104-105; их намагниченность J и магнитная индукция В=H+4JСГС системе единиц или В=(H+J)/µ0 в единицах СИ) растут с увеличением напряжённости магнитного поля H нелинейно (рисунок 5.2) и в полях до 100 Э (7,96·103 А/м) достигают предельного значения Jsмагнитного насыщения и Вт. Значение J зависит от «магнитострикции предыстории» образца, что делает зависимость J от H неоднозначной (наблюдается магнитный гистерезис). При намагничивании ферромагнетиков изменяются их размеры и форма, т.е. наблюдается магнитострикция. Имеется и обратный эффект – кривые намагничивания и петли гистерезиса зависят от внешних механических напряжений. В ферромагнитных монокристаллах наблюдается магнитная анизотропия – различие магнитных свойств по разным кристаллографическим направлениям. В поликристаллах с хаотичным распределением ориентации кристаллических зёрен анизотропия в среднем по образцу отсутствует, но при неоднородном распределении ориентации она может наблюдаться (текстура магнитная).

Ферромагнетик – вещество, в котором ниже определённой температуры (Кюри точки) – устанавливается ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или магнитных моментов коллективизированных электронов (в металлических кристаллах). Среди химических элементов ферромагнитные переходные элементы: Fе, Со и Ni (3d- металлы) и редкоземельные металлы Gd, Тb, Dу; Но, Ег, Тm (таблица 6.2).

Ферромагнитные металлы

Таблица 6.2 - Ферромагнитные металлы

*Jso - намагниченность ед. объёма при абсолютном нуле температуры.

** Точка перехода из ферромагнитного в антиферромагнитное состояние.

Для 3d-металлов и Gd характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков – неколлинеарная (спиральная, циклоидальная и синусоидальная).

Ферромагниты также многочисленны: металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами; сплавы и соединения Сг и Мn с неферромагнитными элементами (Гейслеровы сплавы), соединения ZrZn2 и ZrxM1-x (где М – это Тi, Y, Nb или Hf), Au4V, Sc3Ln и др. (таблица 6.3), а также некоторые соединения группы актинидов, например UH3.

Ферромагнитные соединения

Таблица 6.3 - Ферромагнитные соединения

Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов, например Fe или Co в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обна­ружен также в аморфных (метастабильных) металлических сплавах и соединениях (металлические стекла), в аморфных полупроводниках, в обыч­ных органических и неорганических стёклах халькогенидов (сульфидах, селенидах, теллуридах) и т.п. Число извест­ных неметаллических ферромагнетиков пока невелико. Это, например, ионные соединения типа La1-x СахМn05 (0,4>x>0,2), EuO, Eu2SiO4, EuS, EuSe, EuI2, CrBr3 и т.п. У большинства из них точка Кюри лежит ниже 1 К. Только у сое­динений Eu, халькогенидов, CrB3 значение θ ~ 100 К.

Г) Антиферромагнетики

Антиферромагнетизм – магнитоупорядоченное состояние вещества, ха­рактеризующееся тем, что магнитные моменты соседних частиц вещества – атомов но­сителей магнетизма – ориентированы навстречу друг другу (антипараллель­но) и поэтому намагниченность тела в целом в отсутствии магнитного поля равна нулю. Этим антиферромагнетизм отличается от ферро­магнетизма, при котором одинаковая ориентация всех атомов магнитных моментов приводит к высокой намагниченности тела.

Антиферромагнетизм – упорядоченное состояние вещества, харак­теризующееся тем, что средние магнитные моменты всех (или большей части) ближайших соседей любого иона направлены на­встречу его собственному магнитному моменту. Для этого обменное взаимодействие должно быть отрицательным (при ферромагне­тизме обменное взаимодействие положительно и все магнитные моменты направлены в од­ну сторону). В каждом антиферромаг­нетике устанавливается определённый по­рядок чередования магнитных моментов.

Антиферромагнетик – вещество, в котором установился антиферромагнитный порядок магнитных моментов атомов или ионов. Обычно вещество становится антиферромагнетиком ниже определённой температуры ТN (точка Нееля) и остаётся антиферромагнетикам вплоть до T = 0 K. Из эле­ментов к антиферромагнетикам относятся: твёрдый кислород (α-модификация при T < 24 К), хром - антиферромагнетик с геликоидальной структурой (TN =310 К), α-марганец (TN =100 К), а также ряд редкоземельных металлов (с TN от 60 Ку Tu до 230 Ку Tb). В последних обычно наблюдаются сложные антиферромагнитные структуры в тем­пературной области между TN и некоторой температурой Т1 (0 К<T1< TN); ниже Т1 они становятся ферромагне­тиками.

Число известных химических соединений, которые становятся антиферромагнетиками при определённых температурах, приближается к тысяче.

Свойства редкоземельных элементов – антиферромагнетиков

Таблица 6.4 - Свойства редкоземельных элементов – антиферромагнетиков

Д) Ферримагнетики

Ферримагнетик вещество, в котором при температуре ниже Кюри (точки Тс) существует ферримагнитное упорядочение магнитных моментов ионов. Значит, часть ферримагнетиков – это диэлектрические или полупроводниковые ионные кристаллы, содержащие магнитные ионы различных элементов или одного элемента, но находящиеся в разных кристаллографических позициях (в неэквивалентных узлах кристаллической решётки). Среди них наиболее обширный класс хорошо изученных и широко используемых ферримагнетиков образуют ферриты (шпинели, гранаты и гексаферриты).

Другую группу диэлектрических ферритов образуют двойные фториды (типа RbNiF3), в которых из шести магнитных подрешеток намагниченность четырех направлена в одну сторону, а намагниченность двух других – в противоположную. Двойные фториды прозрачны в видимой области спектра. К ферромагнетикам принадлежит также ряд сплавов и интерметаллических соединений. В большинстве – это вещества, содержащие атомы редкоземельных элементов (R) и элементов группы железа (Me). Их магнитная структура состоит из двух магнитных подрешёток: атомов Me и R, соответственно. Интерметаллические соединения типа RFe2 обладают рекордной магнитострикцией (~10-3 в полях 10–15 кГс) и могут быть использованы в качестве пьезоэлектрических преобразователей. Другой тип редкоземельных интерметаллидов имеет формулу, близкую к RMe6. Эти соединения имеют большую энергию анизотропии и, значит, коэрцитивную силу. Из них изготавливают магниты постоянные с рекордной величиной BHмакс (~107 Гс·Э).

Свойства типичных ферромагнетиков

Таблица 6.5 - Свойства типичных ферромагнетиков

В таблице 5.5 приведены некоторые характеристики типичных ферромагнетиков: температура Кюри Тс, магнитная индукция насыщения     4JS и эффективный магнитный момент Pэфф; магнетонах Бора μб (последние две величины для Т = 0 К).

Е) Метамагнетики

Метамагнитными являются такие материалы, которые в слабых магнитных полях ведут себя как антиферромагнитные, а в сильных магнитных полях – как ферромагнитные, или наоборот. Антиферромагнитными в слабых полях являются MnAs2, диспрозий Dy и эрбий Er. Ферромагнитными - MnAs, MnBi, гольмий Ho и тербий Tb.




Обновлено 13.04.2018 14:55  
Интересная статья? Поделись ей с другими:

Основное меню

Авторизация


© 2024 Электротехнический портал. Все права защищены.

Яндекс.Метрика